Analysis and Optimal Design of Spatial Mechanical Systems

[+] Author and Article Information
H. Ashrafiuon, N. K. Mani

Mechanical and Aerospace Engineering Department, State University of New York at Buffalo, Buffalo, New York 14260

J. Mech. Des 112(2), 200-207 (Jun 01, 1990) (8 pages) doi:10.1115/1.2912593 History: Received November 01, 1988; Online June 02, 2008


This paper presents a new approach to optimal design of large multibody spatial mechanical systems which takes advantage of both numerical analysis and symbolic computing. Identification of system topology is carried out using graph theory. The equations of motion are formulated in terms of relative joint coordinates through the use of a velocity transformation matrix. Design sensitivity analysis is carried out using the direct differentiation method applied to the relative joint coordinate formulation for spatial systems. The symbolic manipulation program MACSYMA is used to automatically generate the necessary equations for both dynamic and design sensitivity analyses for any spatial system. The symbolic equations are written as FORTRAN statements that are linked to a general purpose computer program which performs dynamic analysis, design sensitivity analysis, and optimization, using numerical techniques. Examples are presented to demonstrate reliability and efficiency of this approach.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In