Pattern Matching Synthesis as an Automated Approach to Mechanism Design

[+] Author and Article Information
D. A. Hoeltzel, Wei-Hua Chieng

Laboratory for Intelligent Design, Department of Mechanical Engineering, Columbia University, New York, NY 10027

J. Mech. Des 112(2), 190-199 (Jun 01, 1990) (10 pages) doi:10.1115/1.2912592 History: Received July 01, 1989; Online June 02, 2008


A new knowledge-based approach for the synthesis of mechanisms, referred to as Pattern Matching Synthesis, has been developed based on a combination of committee machine and Hopfield neutral network models of pattern classification and matching applied to coupler curves. Computational tests performed on a dimensionally-parameterized four bar mechanism have yielded 15 distinct coupler curve groups (patterns) from a total of 356 generated coupler curves. This innovative approach represents a first step toward the automation of mapping structure-to-function in mechanism design based on the application of artificial intelligence programing techniques. Demonstrative examples of its application to “real-world” mechanism synthesis problems, including the design and evaluation of a two-stroke pump mechanism and the redesign of a variable-stroke engine mechanism have been included, establishing its viability for creative mechanism synthesis.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In