Du,
X.
, and
Chen,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design,” ASME J. Mech. Des.,
126(2), pp. 225–233.

[CrossRef]
Youn,
B. D.
,
Choi,
K. K.
,
Yang,
R.-J.
, and
Gu,
L.
, 2004, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact,” Struct. Multidiscip. Optim.,
26(3–4), pp. 272–283.

[CrossRef]
Gu,
L.
,
Yang,
R. J.
,
Tho,
C. H.
,
Makowski,
M.
,
Faruque,
O.
, and
Li,
Y.
, 2001, “
Optimization and Robustness for Crashworthiness of Side Impact,” Int. J. Veh. Des.,
26(4), pp. 348–360.

[CrossRef]
Olsson,
A.
,
Sandberg,
G.
, and
Dahlblom,
O.
, 2003, “
On Latin Hypercube Sampling for Structural Reliability Analysis,” Struct. Saf.,
25(1), pp. 47–68.

[CrossRef]
Dubourg,
V.
,
Sudret,
B.
, and
Deheeger,
F.
, 2013, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis,” Probab. Eng. Mech.,
33, pp. 47–57.

[CrossRef]
Wang,
Z.
, and
Wang,
P.
, 2015, “
A Double-Loop Adaptive Sampling Approach for Sensitivity-Free Dynamic Reliability Analysis,” Reliab. Eng. Syst. Saf.,
142, pp. 346–356.

[CrossRef]
Zhang,
J.
, and
Ellingwood,
B.
, 1994, “
Orthogonal Series Expansions of Random Fields in Reliability Analysis,” J. Eng. Mech.,
120(12), pp. 2660–2677.

[CrossRef]
Hu,
C.
, and
Youn,
B. D.
, 2011, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems,” Struct. Multidiscip. Optim.,
43(3), pp. 419–442.

[CrossRef]
Hawchar,
L.
,
El Soueidy,
C.-P.
, and
Schoefs,
F.
, 2017, “
Principal Component Analysis and Polynomial Chaos Expansion for Time-Variant Reliability Problems,” Reliab. Eng. Syst. Saf.,
167, pp. 406–416.

[CrossRef]
Der Kiureghian,
A.
, and
Dakessian,
T.
, 1998, “
Multiple Design Points in First and Second-Order Reliability,” Struct. Saf.,
20(1), pp. 37–49.

[CrossRef]
Du,
X.
,
Sudjianto,
A.
, and
Chen,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy,” ASME J. Mech. Des.,
126(4), pp. 562–570.

[CrossRef]
Hohenbichler,
M.
,
Gollwitzer,
S.
,
Kruse,
W.
, and
Rackwitz,
R.
, 1987, “
New Light on First- and Second-Order Reliability Methods,” Struct. Saf.,
4(4), pp. 267–284.

[CrossRef]
Zhao,
Y.-G.
, and
Ono,
T.
, 1999, “
A General Procedure for First/Second-Order Reliability Method (FORM/SORM),” Struct. Saf.,
21(2), pp. 95–112.

[CrossRef]
Der Kiureghian,
A.
, 2000, “
Geometry of Random Vibrations and Solutions by FORM and SORM,” Probab. Eng. Mech.,
15(1), pp. 81–90.

[CrossRef]
Zhang,
J.
, and
Du,
X.
, 2010, “
A Second-Order Reliability Method With First-Order Efficiency,” ASME J. Mech. Des.,
132(10), p. 101006.

[CrossRef]
Bucher,
C. G.
, and
Bourgund,
U.
, 1990, “
A Fast and Efficient Response Surface Approach for Structural Reliability Problems,” Struct. Saf.,
7(1), pp. 57–66.

[CrossRef]
Kaymaz,
I.
, 2005, “
Application of Kriging Method to Structural Reliability Problems,” Struct. Saf.,
27(2), pp. 133–151.

[CrossRef]
Kim,
C.
, and
Choi,
K. K.
, 2008, “
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation,” ASME J. Mech. Des.,
130(12), p. 1214011.

[CrossRef]
Xu,
H.
, and
Rahman,
S.
, 2004, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics,” Int. J. Numer. Methods Eng.,
61(12), pp. 1992–2019.

[CrossRef]
Youn,
B. D.
,
Xi,
Z.
, and
Wang,
P.
, 2008, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis,” Struct. Multidiscip. Optim.,
37(1), pp. 13–28.

[CrossRef]
Lee,
I.
,
Choi,
K. K.
,
Du,
L.
, and
Gorsich,
D.
, 2008, “
Dimension Reduction Method for Reliability-Based Robust Design Optimization,” Comput. Struct.,
86(13–14), pp. 1550–1562.

[CrossRef]
Bae,
S.
,
Kim,
N. H.
, and
Jang,
S. G.
, 2018, “
Reliability-Based Design Optimization Under Sampling Uncertainty: Shifting Design Versus Shaping Uncertainty,” Struct. Multidiscip. Optim.,
57(5), pp. 1845–1855.

[CrossRef]
Nannapaneni,
S.
, and
Mahadevan,
S.
, 2016, “
Reliability Analysis Under Epistemic Uncertainty,” Reliab. Eng. Syst. Saf.,
155, pp. 9–20.

[CrossRef]
Aguirre Martinez,
F.
,
Sallak,
M.
, and
Schon,
W.
, 2015, “
An Efficient Method for Reliability Analysis of Systems Under Epistemic Uncertainty Using Belief Function Theory,” IEEE Trans. Reliab.,
64(3), pp. 893–909.

[CrossRef]
Muscolino,
G.
,
Santoro,
R.
, and
Sofi,
A.
, 2016, “
Reliability Analysis of Structures With Interval Uncertainties Under Stationary Stochastic Excitations,” Comput. Methods Appl. Mech. Eng.,
300, pp. 47–69.

[CrossRef]
Peng,
X.
,
Wu,
T.
,
Li,
J.
,
Jiang,
S.
,
Qiu,
C.
, and
Yi,
B.
, 2018, “
Hybrid Reliability Analysis With Uncertain Statistical Variables, Sparse Variables and Interval Variables,” Eng. Optim.,
50(8), pp. 1347–1363.

[CrossRef]
Wang,
P.
,
Youn,
B. D.
,
Xi,
Z.
, and
Kloess,
A.
, 2009, “
Bayesian Reliability Analysis With Evolving, Insufficient, and Subjective Data Sets,” ASME J. Mech. Des.,
131(11), p. 111008.

[CrossRef]
Hu,
Z.
,
Mahadevan,
S.
, and
Du,
X.
, 2016, “
Uncertainty Quantification of Time-Dependent Reliability Analysis in the Presence of Parametric Uncertainty,” ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.,
2(3), p. 031005.

[CrossRef]
Xue,
G.
,
Dai,
H.
,
Zhang,
H.
, and
Wang,
W.
, 2017, “
A New Unbiased Metamodel Method for Efficient Reliability Analysis,” Struct. Saf.,
67, pp. 1–10.

[CrossRef]
Nannapaneni,
S.
,
Hu,
Z.
, and
Mahadevan,
S.
, 2016, “
Uncertainty Quantification in Reliability Estimation With Limit State Surrogates,” Struct. Multidiscip. Optim.,
54(6), pp. 1509–1526.

[CrossRef]
Jiang,
Z.
,
Chen,
W.
,
Fu,
Y.
, and
Yang,
R.-J.
, 2013, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty,” SAE Int. J. Mater. Manuf.,
6(3), pp. 502–516.

Pan,
H.
,
Xi,
Z.
, and
Yang,
R.-J.
, 2016, “
Model Uncertainty Approximation Using a Copula-Based Approach for Reliability Based Design Optimization,” Struct. Multidiscip. Optim.,
54(6), pp. 1543–1556.

[CrossRef]
Shi,
L.
, and
Lin,
S.-P.
, 2016, “
A New RBDO Method Using Adaptive Response Surface and First-Order Score Function for Crashworthiness Design,” Reliab. Eng. Syst. Saf.,
156, pp. 125–133.

[CrossRef]
Moon,
M.-Y.
,
Choi,
K. K.
,
Cho,
H.
,
Gaul,
N.
,
Lamb,
D.
, and
Gorsich,
D.
, 2017, “
Reliability-Based Design Optimization Using Confidence-Based Model Validation for Insufficient Experimental Data,” ASME J. Mech. Des.,
139(3), p. 031404.

[CrossRef]
Kennedy,
M. C.
, and
O'Hagan,
A.
, 2001, “
Bayesian Calibration of Computer Models,” J. R. Statist. Soc., Ser. B,
63, pp. 425–464.

[CrossRef]
Du,
X.
,
Sudjianto,
A.
, and
Huang,
B.
, 2005, “
Reliability-Based Design With the Mixture of Random and Interval Variables,” ASME J. Mech. Des.,
127(6), pp. 1068–1076.

[CrossRef]
Ching,
J.
, and
Hsieh,
Y.-H.
, 2007, “
Local Estimation of Failure Probability Function and Its Confidence Interval With Maximum Entropy Principle,” Probab. Eng. Mech.,
22(1), pp. 39–49.

[CrossRef]
Nagahara,
Y.
, 2004, “
A Method of Simulating Multivariate Nonnormal Distributions by the Pearson Distribution System and Estimation,” Comput. Stat. Data Anal.,
47(1), pp. 1–29.

[CrossRef]
Slifker,
J. F.
, and
Shapiro,
S. S.
, 1980, “
The Johnson System: Selection and Parameter Estimation,” Technometrics,
22(2), pp. 239–246.

[CrossRef]
Butler,
R. W.
, 2007, Saddlepoint Approximations With Applications, Cambridge University Press, Cambridge, UK pp. 1–564.

Jaynes,
E. T.
, 1982, “
On the Rationale of Maximum-Entropy Methods,” Proc. IEEE,
70(9), pp. 939–952.

[CrossRef]
Anderson,
N. H.
,
Hall,
P.
, and
Titterington,
D. M.
, 1994, “
Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates,” J. Multivariate Anal.,
50(1), pp. 41–54.

[CrossRef]
Xi,
Z.
,
Hu,
C.
, and
Youn,
B. D.
, 2012, “
A Comparative Study of Probability Estimation Methods for Reliability Analysis,” Struct. Multidiscip. Optim.,
45(1), pp. 33–52.

[CrossRef]
Zhang,
X.
, and
Pandey,
M. D.
, 2013, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method,” Struct. Saf.,
43, pp. 28–40.

[CrossRef]
Rasmussen,
C. E.
, and
Williams,
C. K. I.
, 2006, Gaussian Processes for Machine Learning,
The MIT Press, Cambridge, MA.

Ferson,
S.
,
Oberkampf,
W. L.
, and
Ginzburg,
L.
, 2008, “
Model Validation and Predictive Capability for the Thermal Challenge Problem,” Comput. Methods Appl. Mech. Eng.,
197(29–32), pp. 2408–2430.

[CrossRef]
Schroeder,
B. B.
,
Hu,
K. T.
,
Mullins,
J. G.
, and
Winokur,
J. G.
, 2016, “
Summary of the 2014 Sandia Verification and Validation Challenge Workshop,” ASME. J. Verif. Valid. Uncertainty Quantif.,
1(1), p. 015501.

[CrossRef]
Li,
W.
,
Chen,
S.
,
Jiang,
Z.
,
Apley,
D. W.
,
Lu,
Z.
, and
Chen,
W.
, 2016, “
Integrating Bayesian Calibration, Bias Correction, and Machine Learning for the 2014 Sandia Verification and Validation Challenge Problem,” ASME J. Verif., Valid. Uncertainty Quantif.,
1(1), p. 011004.

Xi,
Z.
, and
Yang,
R.-J.
, 2016, “
Reliability Analysis With Model Uncertainty Coupling With Parameter and Experimental Uncertainties: A Case Study of 2014 Verification and Validation Challenge Problem,” ASME J. Verif. Valid. Uncertainty Quantif.,
1(1), p. 011005.

Choudhary,
A.
,
Voyles,
I. T.
,
Roy,
C. J.
,
Oberkampf,
W. L.
, and
Patil,
M.
, 2016, “
Probability Bounds Analysis Applied to the Sandia Verification and Validation Challenge Problem,” ASME J. Verif. Valid. Uncertainty Quantif.,
1(1), p. 011003.

Mullins,
J.
, and
Mahadevan,
S.
, 2016, “
Bayesian Uncertainty Integration for Model Calibration, Validation, and Prediction,” ASME J. Verif. Valid. Uncertainty Quantif.,
1(1), p. 011006.

Beghini,
L. L.
, and
Hough,
P. D.
, 2016, “
Sandia Verification and Validation Challenge Problem: A PCMM-Based Approach to Assessing Prediction Credibility,” ASME J. Verif. Valid. Uncertainty Quantif.,
1(1), p. 011002.